Ecological and nutrient retention effects of river and floodplain restoration: experiences from Denmark

Brian Kronvang
and
Carl Christian Hoffmann

BKR@DMU.DK
Outline

1. Dimensions and goals in river restoration.
2. River restoration in Denmark – a history of a nice sequence of Governmental Actions.
4. Effects of buffer zones along Danish streams.
5. Effects of wetland restoration for nutrient retention.
6. River re-meandering in Denmark - projects and outcomes?
7. Can we extract a new learning from 19 years of ecological effect monitoring of an active restoration (re-meandering) of the River Gelså, Denmark and an upstream passive restored reach (ceased river maintenance) ?
8. WFD mapping of watercourses at risk – pressures and river types – the Pilot River Odense, Denmark.
Five dimensions in river quality
Background nitrate-N concentrations in Danish streams and lakes
8 goals with river restoration

1. Clean water (point sources)
2. Secure connectivity.
3. Improve hydromorphology.
4. Enhance biodiversity – plants, fish (salmon, haunting), macroinvertebrates, birds, otter, beavers, etc
5. Cleaner water – less nutrients through self-purification in river and wetlands.
6. Improve flood protection.
7. Dampen temperature fluctuations.
8. Attractive recreation.
1. Point sources - treatment

2. River restoration – removing barriers

3. River restoration – spawning grounds

4. River hydromorphology - remeandering

5. Change in river maintenance - bioengineering weed cutting, buffer strips

6. River re-meandering – wetland restoration

7. Cease of river maintenance - stop weed cutting in channels, 10 m buffer zone
New proposal for a Danish plan for Green Growth 2015 – Danish Government April 2009

- Reduction of nitrogen loss to surface waters of 19,000 tonnes N.
- A marked based annual nitrogen quota system for trading (annual auction?) – Ready from 2012 and will have to be accepted by EU. Profit from selling quota is returned to farmers via reduced taxes.
- Extra 140,000 ha with catch crops.
- Restored wetlands on up to 10,000 ha
- Inundated floodplains on up to 3,000 ha
- Establishment of 50,000 ha of 10 m wide uncultivated buffer zones in riparian corridors along streams and around lakes before 2015 to reduce losses of P from surface runoff, bank erosion and leaching.
- River restoration along up to 7,300 km channels.
Plot studies show generally a high efficiency of buffer zones for retention of total P!
But – reality is somewhat different! Probability for fine sediment delivery from soil erosion on arable fields to streams through a buffer zone of various width – field survey of 130 fields during 3 winter periods.
River re-meandering and wetland restoration – DK in the forefront

Lake Bølling
Area: 375 ha + 375 ha meadow

River Skjern
2200 hectares 34 mill. Euro

Danish Governmental Decision: Second Action Plan on the Aquatic Environment

3000 ha lakes and 4000 ha wetlands restored from 1998-2006

Brian Kronvang
COST 869 workshop 18-19 May 2009
Measuring rates of nitrogen removal in restored wetlands

Governmental funding for 1 year post monitoring of nutrients mass-balance approach- It surely works!

<table>
<thead>
<tr>
<th>Name of Project</th>
<th>Area (ha)</th>
<th>Measured N-removal (kg N ha(^{-1}) yr(^{-1}))</th>
<th>Measured N-removal + changed land use (kg N ha(^{-1}) yr(^{-1}))</th>
<th>Estimated N-removal (kg N ha(^{-1}) yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egebjerg enge(^1)</td>
<td>34</td>
<td>53</td>
<td>53</td>
<td>200</td>
</tr>
<tr>
<td>Egebjerg enge(^2)</td>
<td>72-688</td>
<td>72-688</td>
<td>72-688</td>
<td>200</td>
</tr>
<tr>
<td>Hellegård å</td>
<td>66</td>
<td>!</td>
<td>!</td>
<td>280</td>
</tr>
<tr>
<td>Kappel(^4)</td>
<td>28</td>
<td>14</td>
<td>39</td>
<td>140</td>
</tr>
<tr>
<td>Geddebækken(^4)</td>
<td>39</td>
<td>90</td>
<td>125</td>
<td>215</td>
</tr>
<tr>
<td>Horne Mølleå</td>
<td>14</td>
<td>220</td>
<td>255</td>
<td>200</td>
</tr>
<tr>
<td>Karlsmosen</td>
<td>63</td>
<td>337</td>
<td>372</td>
<td>270</td>
</tr>
<tr>
<td>Lindkær</td>
<td>84</td>
<td>191</td>
<td>226</td>
<td>235</td>
</tr>
<tr>
<td>Snaremose "Sø"(^3)</td>
<td>34</td>
<td>256</td>
<td>291</td>
<td>200</td>
</tr>
<tr>
<td>Frisvad M.bæk(^4)</td>
<td>39</td>
<td>(95)</td>
<td>(170)</td>
<td>279</td>
</tr>
<tr>
<td>Ulleruplund</td>
<td>13</td>
<td>133</td>
<td>170</td>
<td>210</td>
</tr>
<tr>
<td>Gammelby Bæk</td>
<td>27</td>
<td>83</td>
<td>105</td>
<td>343</td>
</tr>
<tr>
<td>Nagbøl Å</td>
<td>64</td>
<td>163</td>
<td>187</td>
<td>300</td>
</tr>
<tr>
<td>Hjarup Bæk</td>
<td>31</td>
<td>170</td>
<td>200</td>
<td>475</td>
</tr>
</tbody>
</table>
Nitrogen removal in surveyed lakes

<table>
<thead>
<tr>
<th>Lake name</th>
<th>Lake area</th>
<th>Total area</th>
<th>Measured</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Årslev Engsø</td>
<td>100</td>
<td>210</td>
<td>252</td>
<td>382</td>
</tr>
<tr>
<td>Hals sø</td>
<td>42</td>
<td>53</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>Nakkebølle</td>
<td>85</td>
<td>110</td>
<td>125</td>
<td>300</td>
</tr>
<tr>
<td>Skibet</td>
<td>26</td>
<td>40</td>
<td>125</td>
<td>205</td>
</tr>
<tr>
<td>Slivsø</td>
<td>160</td>
<td>203</td>
<td>244</td>
<td>440</td>
</tr>
<tr>
<td>Wedellsborg</td>
<td>11</td>
<td>27</td>
<td>126</td>
<td>234</td>
</tr>
<tr>
<td>Ødis Sø</td>
<td>26</td>
<td>40</td>
<td>184</td>
<td>230</td>
</tr>
</tbody>
</table>

Note: Measured and Estimated values are in kg N ha\(^{-1}\) year\(^{-1}\) (total project area).
Phosphorus

Results from the wetland monitoring programme – sometimes it works!

<table>
<thead>
<tr>
<th>Wetlands</th>
<th>P-retention Kg P ha(^{-1}) yr(^{-1})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulleruplund</td>
<td>-0.43</td>
<td>-88</td>
</tr>
<tr>
<td>Gammelby</td>
<td>-0.4</td>
<td>-7</td>
</tr>
<tr>
<td>Bæk (different calculations)</td>
<td>0.4</td>
<td>6</td>
</tr>
<tr>
<td>Egebjerg Enge</td>
<td>0.13</td>
<td>6</td>
</tr>
<tr>
<td>Karlsmosen</td>
<td>8.1 – 9.0</td>
<td>53-60</td>
</tr>
<tr>
<td>Snaremose</td>
<td>2.6</td>
<td>18</td>
</tr>
<tr>
<td>Lindkær</td>
<td>-0.5</td>
<td>-11</td>
</tr>
<tr>
<td>Geddebækken</td>
<td>0.5</td>
<td>21</td>
</tr>
<tr>
<td>Nagbøl Å</td>
<td>0.9</td>
<td>11</td>
</tr>
<tr>
<td>Hjarup Bæk</td>
<td>12</td>
<td>42</td>
</tr>
</tbody>
</table>
Why study the interaction between river and floodplain?
More than 90% of Danish lowland streams and rivers has been regulated for draining the surrounding land for agricultural production.
So, today, flooding is seldom along Danish rivers and the natural functioning of floodplains as sinks for sediment, carbon, nitrogen and phosphorus are cut off.
125 river restoration projects where the natural hydrological interaction between river and floodplain is restored have been completed in Denmark:

Before 1990: 5 projects
1990-1994: 14 projects
1998-2004: 35 projects
2004-2005: 35 projects
2006-2007: ca. 10 projects

TOTAL: ca. 125 projects
River Odense, Denmark
River restoration for creating inundations of floodplains

Odense River Nov 2003

Odense River Jan 2004
Methods

- Water exchange
- Flow velocity
- Flow direction
- Daily mean discharge
- Interactions between river and floodplain

Sedimentation
- Net sedimentation on 59 artificial grass mats
- Concentration of suspended sediment was monitored in water samples taken at 50 selected sites. Besides it was monitored automatically in the river and along a transect
Model simulation of particulate P deposition on the 74 ha floodplain utilising a detailed topographic survey of the floodplain
Larger river re-meandering projects conducted in Denmark:

Total = 109 projects
River re-meandering in Denmark

- Many larger projects have been carried out for more than 25 years and with a high cost - but what have we achieved?

- Documentation of ecological effects do not correspond to the large number of projects carried out - but we do have - at least - fragments of knowledge
Experiences from monitoring river restoration in Denmark.

Short-term effects - well described

- Initial increased erosion and transport of suspended sediments, bed load and nutrients.
- Initial reduction in number of taxa and especially density of plants and animals.
- Improved physical conditions.
- Recovery within 1 to 2 years of both sediment, chemical and biological features – avoid effects monitoring 1st year after restoration.
- Recovery rate very different between projects reflecting placement in river continuum, climatic conditions during the restoration period and site specific conditions such as hydrology, geomorphology and ecological dispersal potential.
Experiences/2

- Longer - or long-term effects

?

The few studies (primarily River Gelså) showed no or very limited – shorter term effects on the biota from 1989-1997

Friberg et al., 1998 and 2001
The River Gelså re-meandering case study – 19th years of experience

- In 1989 the 1,300 m channelized River Gelså (6 m in width) was restored to a new 1,800 m meandering reach.
- At the same time all stream maintenance ceased regarding annual weed cuttings and dredging of the channel.
- A monitoring of the ecological conditions started before the re-meandering in 1989 on five reaches of the restored reach and on two upstream control reaches (a Before-After Control-Impact - BACI design was implemented).
- All stream maintenance was also ceased on the upstream control reach – so what was intended a true control became an example of a passive restored reach.
Upstream control reach – 2008

Restored reach – 2008
Habitat Quality improved from 1997 to 2008 on the active re-meandered reach but only to a level being comparable to the habitat quality on the passive restored reach (ceased river maintenance)
ASPT (Average Score Per Taxa) macroinvertebrate Index increased on the active restored reach as opposed to the passive restored reach.
The improved habitat conditions on the active restored channel as opposed to the passive restored control channel are mainly due to the massive use of big stones for securing river meander bends from erosion!
No marked differences in Brown trout density against habitat suitability index among the control and re-meandered reaches.
But a new invasive species was caught during electro fishing.
Increase in the total richness of plant species in the restored reach of River Gelså. Changes in plant community towards more sensitive and rare species due to cease in weed cutting on both active and passive restored reaches in river Gelså.

<table>
<thead>
<tr>
<th></th>
<th>Before restoration</th>
<th>1 year after</th>
<th>2 years after</th>
<th>13 years after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total richness</td>
<td>19</td>
<td>23</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Richness in submerged and amphibious species</td>
<td>14</td>
<td>12</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>
Possible development in the ecological diversity following different river management methods

- Active restoration - re-meandering
- Passive restoration – ceased maintenance
- Harsh river maintenance
Costs of three main types of river restoration measures being implemented in Denmark

1. Hard Active Restoration involving re-meandering with much planning and use of heavy machinery: (15,000-150,000 EURO per km river channel depending greatly on size of channel).

2. Passive Restoration through ceased river maintenance earns money: (1,000-2,000 EURO per km river channel).

3. Soft Active Restoration involving ceased river maintenance and input of stones and wood to the river channel: (2,000-20,000 EURO per km river channel).
Pressures on watercourses in the River Odense Basin being at risk for not fulfilling the WFD objectives in 2015.

<table>
<thead>
<tr>
<th>Direct pressures on biota from obstructions, etc.</th>
<th>Morphological pressures</th>
<th>Hydrological pressures</th>
<th>Harmfull substances</th>
<th>Organic and nutrient pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.3 %</td>
<td>77.0 %</td>
<td>0.5 %</td>
<td>2.2 %</td>
<td>22.6 %</td>
</tr>
</tbody>
</table>
How to prioritize river restoration measures - Pilot River Odense case study

<table>
<thead>
<tr>
<th></th>
<th>Type 1 (1-2 order)</th>
<th>Type II (3-4 order)</th>
<th>Type III (> 4th order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for restoration (km)</td>
<td>155</td>
<td>54</td>
<td>18</td>
</tr>
<tr>
<td>Soft active restoration (km)</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive restoration - cease river maintenance (km)</td>
<td></td>
<td>54</td>
<td>18</td>
</tr>
<tr>
<td>Culverted stream channels (km)</td>
<td>236</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hard active restoration - re-opening of culverted reaches</td>
<td>236</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Restoration of small streams gives both more km and more ecological value for the costs - they are the heart of river systems

- The river network in Europe consists of about 12 million kilometres of rivers and at least 80% of them are small (1st and 2nd order streams).
- Such rivers are commonly known as headwaters, creeks, streams or brooks.
- From an ecological point of view they are extremely valuable by providing habitats for a wide range of plants and animals and their colonization potential for the river continuum are invaluable.
Hard engineering of river banks for preventing free dynamics and processes
Autumn 2007 – along a new re-meandered river in Denmark

The world is like a river that runs along its bed, accidentally puts up sandbanks now here, now there, and is forced by these, in turn, into a different course. All this happens so nicely and easily and little by little. Yet the water engineers find it hard when they try to work against its nature (Goethe 1807)