Phosphorus mobilization at plot and field scale

Elisabetta Barberis

Di.VA.PRA – University of Torino - Italy
Mobilization is the initiation of P movement:

- **Mechanisms**
 - Accumulation
 - Mobilization
 - Transport

- **Critical areas**
 - Source factors
 - P forms
 - Soil properties
 - Solution properties
 - Transport factors

- **P transfer** from soil to water
Processes for mobilization

- Solubilization
- Detachment

![Image of wet field](image-url)
Solubilization → Transfer of P from a solid phase to a water phase

Soluble P < 0.45 µm

inorganic
organic
condensed
colloidal

OM and biomass

mineralization
organization

P in solution

dissolution
precipitation

Secondary minerals (P-Ca, Fe e Al)

Primary minerals

ox-Fe /Al
Clay minerals

Solubilization

Dissolution
Precipitation
Mineralization
Organic

Transfer of P from a solid phase to a water phase
Detachment → Particulate P >0.45\(\mu\)m
Soil with low P sorption capacity

Soil properties

1. Texture: sandy
2. Low specific surface area
3. Poor in P sorbing constituents

Leaching through sandy soils towards the ground water accounted for about 85-90% of the P losses from the agricultural land. (Breeuwsma and Silva; 1992)
Soil with high P sorption capacity

Soil properties

1. **Texture**: clay
2. **High specific surface area**
3. **Rich in P sorbing constituents**

Solubilization

1. *in the humid temperate regions*: poorly crystalline Fe and Al oxides and organic complexes (van der Zee et al., 1990)
2. *in the Mediterranean region*: crystalline Fe oxides, carbonates and clay minerals (Peña & Torrent, 1990)
In agricultural soils P tends to accumulate in the topsoil

<table>
<thead>
<tr>
<th>P level</th>
<th>P addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Replacement of P (R)</td>
</tr>
<tr>
<td>C</td>
<td>(R) + 15 kg P ha(^{-1}) y(^{-1})</td>
</tr>
<tr>
<td>D</td>
<td>(R) + 30 kg P ha(^{-1}) y(^{-1})</td>
</tr>
</tbody>
</table>

Prediction of soil P susceptible to transfer to water in soluble forms.

Approaches

• Use of soil test P (STP)
• Evaluation of P sorption properties of soils
• Quantification of P in the soil solution

Experimental methodologies

Tested measuring P concentration and/or P forms in leachate

1. Intact soil cores
2. Homogenized soil columns
3. Lysimeter
4. Porous cup
5. Drainage water
6. Surface runoff
1. Solubilization: use of STP

The amount of P released from soil solid phases to solution is dependent on soil P status

Relathionship between STP and RP

Heckrath et al. 1995
McDowell and Condron, 1999
Hesketh and Brookes, 2000

...

Olsen P (ppm)

CaCl$_2$-RP µg L$^{-1}$

Orup
S. Ugglarp
Ekebo
Fjärdingslöv
Örja
Högåsa
Fors
Bjertorp
Klostergården
Kungsängen

Orup, S. Ugglarp, Ekebo, Fjärdingslöv, Örja, Högåsa, Fors, Bjertorp, Klostergården, Kungsängen

The amount of P released from soil solid phases to solution is dependent on the degree of P sorption saturation (DPSS)

$$DPSS\ (\%) = \frac{\text{sorbed P}}{\text{P Sorption Capacity (PSC)}} \times 100$$

$$DPSS\ (\%) = \frac{P_{ox}}{\alpha (\text{Fe}_{ox} + \text{Al}_{ox})} \times 100$$

van der Zee et al. (1987)
The amount of P released from soil solid phases to solution is dependent on the degree of P sorption saturation.

\[
\text{DPSS (\%)} = \frac{\text{sorbed P}}{\text{PSC}} \times 100
\]
2. Solubilization: evaluation of PSC

\[y = 0.65x - 0.07 \]

\[r^2 = 0.94*** \]
Extraction of soils at different solution:soil ratio

1:1
- Simulate leaching conditions

10000:1
- Simulate runoff or interactions between soil and rain

Water
CaCl₂ 0.002-0.01 M

1.2:1 versus RP in leachates
Chapman et al., 1997

100:1 versus RP in runoff
Yli-Halla et al. 1995
Detachment of soil particles and colloids with attached P is mainly due to forces exerted by moving water and repulsive forces between colloidal particles.
Particulate P >0.45µm

\[P_{\text{loss}} = \frac{\text{Mass of P}}{\text{Mass of erodible soil}} \times \frac{\text{Mass of erodible soil}}{\text{Volume}} \]

P concentration of soil particles

the loss of soil
Physical factors:
- rain splash energy
- slaking forces
- shear forces of overland flow

Chemical factors
- properties of dispersible particles
- properties of soil solution
Dispersion/flocculation behavior of colloids depends on their charge
Particles Charge

<table>
<thead>
<tr>
<th>Material</th>
<th>Charge at Soil pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter</td>
<td>Negative at all</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>Negative at all</td>
</tr>
<tr>
<td>Fe and Al oxides</td>
<td>Positive at pH < PZC, Negative at pH > PZC</td>
</tr>
</tbody>
</table>

Detachment

- **pH < PZC**
- **pH = PZC**
- **pH > PZC**

- **goethite**
- **caolinite**
Surface charge

- monovalents

\[\text{pH} < \text{pzc} \]

- polivalent

Ionic strength

Dispersion
Effects of anions adsorption on surface properties

The new surface is more negative
Sorption of Pi and IHP on goethite
Effect on Zeta Potential (ζ)
Detachment

Percentage of IHP saturation

Zeta potential (mV)

0.5 - 0.8 µm

0.5 - 2 µm

Celi and Barberis 2005
Detachment

Effects of P application rate on water dispersible clay

P rate (mg kg\(^{-1}\))

Water dispersible clay g (kg\(^{-1}\))

PSC = 52 mg kg\(^{-1}\)

Colloidal P in suspension mg L\(^{-1}\)

Sorbed P (ultra-centrifuged) mg kg\(^{-1}\)

Adapted from Zhang, He, Calvert, Stoffella, 2003. Soil Sci.

Prediction of soil P susceptible to transfer to water in particulate forms.

Approaches

- Wet sieving
- Dispersibility of a single aggregate
- Percolation stability test
- Erodibility tests
- Soil dispersibility tests

Physically based
Total soil P content is not a good index of particulate P

PER = \frac{\text{Total P in clay}}{\text{Total P in soil}}

Barberis and Withers 2002
Prediction of soil P susceptible to transfer to water in particulate forms.

- **Soil dispersibility tests**
 - Measure of suspended solids and P
 - Calibration with indoor/outdoor simulation

Detachment

Suspended sediment

- Event 1
- Event 2
- TF, event 1
- TF, event 2

\[y = 3.9x - 0.67 \]

\[r^2 = 0.75 \]

Amounts dispersed in test (g)

DESPRAL test

Gentle water dispersion test at solution to soil ratio 20:1

Total P

\[y = 2.63x - 0.43 \]

\[r^2 = 0.67 \]

Amounts dispersed in runoff (mg)

Correlations between Total suspended sediment (TSS) and detached P and soil properties

\[\ln \text{TSS} = -1.319 + 0.378(\ln \text{clay}) + 0.017\times(\text{silt}) - 0.151(\ln \text{Olsen P}) \]

TP detached

Total soil Olsen P

- Clay
- pH
- Organic matter

NOT or poorly Correlated with

Udeigwe et al. 2007; Withers et al. 2007; Borda et al. 2010
Thank you