Recovery of the Lakes in Central Switzerland: Programme based on Article 62a Water Protection Act
Lessons learned by the federal agencies

Victor Kessler, FOPH, Head of the Federal Working Group on Nitrate

Nottwil, 25 June 2009
Situation of the “Midland” lakes today

Considerably improved conditions
Lake Sempach and Lake Baldegg < 30 mg P / m³ water
→ Measures within the lake (aeration, assisted circulation)
→ Agricultural measures
→ Prohibition of P in laundry detergents, removal of P in sewage treatment plants since the late 1980s.
→ Other reasons?
Contents

1. Overview of the rehabilitation programme (Art. 62a Water Protection Act)
2. Rehabilitation of the lakes of central Switzerland
3. Agricultural measures
4. Legal framework
5. Achievement of objectives in agriculture
6. Achievement of objectives in water protection
7. Uncertain interpretation
8. Conclusions
1. Rehabilitation programme according to Art. 62a Water Protection Act

Article 62a Water Protection Act (1999):
Swiss Confederation may provide financial support for cantonal rehabilitation projects

Requirements:

a) Measures are necessary (existing pollution)
b) Inclusion in a rehabilitation programme
c) Measures are not economically feasible
1. Cornerstone of implementation

- Financial support by the Swiss Confederation: max. 80% of the costs
- Swiss Confederation sets guidelines
- Flexibility for the cantons in choosing the measures
- Duration of the projects: unlimited, periods of 6 years
- Achievement of objectives: during the first two periods (12 years)
- Payments only for measures that help achieve the objective
 - Changes in the structure of farms
 - Technical measures (e.g. direct seeding)
 - Production measures (e.g. natural meadows)
1. Federal financial contribution

Financial contributions to the cantons:

• Coaching: 50 %, max. 20,000 SFr for project planning
• Basic procurement: 30 % of the allowable costs (Art. 64 of the Water Protection Act) for the determination of \(Z_u \), delimitation of the project area, simulation of nitrate leaching etc.

Financial contributions the farmers:

• Max. 80 % of the allowable costs, depending on the characteristics of the substance, the planned reduction and the measures chosen
Current projects according to Art. 62a Water Protection Act

<table>
<thead>
<tr>
<th>Number of projects</th>
<th>Area affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate projects</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>4,725 hectares</td>
</tr>
<tr>
<td>Phosphorus projects</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>14,007 hectares</td>
</tr>
<tr>
<td>Projects on plant protection products</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2,452 hectares</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>21,184 hectares</td>
</tr>
</tbody>
</table>

Total cost of all projects (paid and authorised)	67 million SFr
Costs for the Confederation (78%)	52 million SFr
Total cost of P projects	45 million SFr
Overview of the phosphorus situation
3 Lakes – 3 rehabilitation projects

Lake Hallwil
project area: 3786 ha
initially: 50 mg P/m³ - objective: 20 mg P/m³
project started: 2001

Lake Baldegg
Project area: 5600 ha
initially: 100 mg P/m³ - objective: 30 mg P/m³
project started: 2000

Lake Sempach
Project area: 4621 ha
initially: 40 mg P/m³ - objective: 20 mg P/m³
project started: 1999
Requirements regarding phosphorus

Requirements for standing water-bodies according to Appendix 2 of the Ordinance on Water Protection:

- No numerical requirements for P
- Requirements concerning water quality, such as:
 - the nutrient content must only allow a medium production of biomass; special natural relationships are reserved
 - no low oxygen conditions and no unfavourable pH value
- The oxygen content of the water must at no time and at no depth within the lake be less than 4 mg/l O₂

Objective in projects according to Art. 62a Water Protection Act

Phosphorus content less than 20 mg/m³ in thoroughly mixed free water

However: this target value depends on the properties of each lake.
Measures

- Buffer strips (at least 5m)
- Retention ponds
- Nutrient balance-sheet ≤ 100%
 Max. P output / year
- Direct seeding
- no winter fallow period
- soil analyses
- good timing of manure application
- adjustment of crop rotation
- structural adjustments
- further training
Measures and contributions

- **Lake contract** *(packet of measures)* 300 SFr / ha
- **Reduction in P use** *(< 100 %)* 15 SFr / kg of P_2O_5 not applied
- **Direct seeding** *(e.g. maize)* 300 SFr / ha
- **Mulching** *(potatoes)* 400 SFr / ha
- **Buffer strips** 900 SFr / ha
- **Erosion protection strips** 2,000 SFr / ha
- **Reduction in animals** *(pigs, poultry)* individual contribution
- **Areas of non-intensive use** 900 SFr *(valley)*
 1,200 SFr *(pre-Alps)*
- **Structural adjustments** structural costs
- **Retention ponds** construction costs
- **Innovative projects** 5,000 to 20,000 SFr
Changes in P concentration (Lake Baldegg)

Beginning of project
Changes in P concentration (Lake Sempach)

Mittlere Phosphorkonzentration im Sempachersee
1980 - 2009

- mittlere Phosphorkonzentration in mg/m³
- Ziel: weniger als 30 mg/m³ Phosphor im ganzen Wasserkörper

Phosphorkonzentration während der Winterzirkulation 26 mg P/m³
Achievement of objectives - agriculture

Legal framework provisions apply pressure:

- P Ordinance of the Canton of Lucerne; in force since 24.09.02 through intervention of Confederation → fulfilment of contract demanded
- FOAG mandate 2005: Baldegg + Sempach; 2006: Hallwil (with binding objectives and intermediate objectives of 20 or 30 mg P/l)
- Number 2.1 of Direct Payment Ordinance since 2007: Farms in a catchment area from which nutrients are removed must only fertilise with phosphorus in accordance to the soil → 80 % of requirement for D and E types of land
 - Condition without compensation
Achievement of objectives - agriculture

+ Implementation goals of project achieved by agriculture
+ Measures are to be considered as effective
+ “P reduction” in soils underway
+ Optimum achieved by “voluntary” participation
 – Increased number of animals despite P Ordinance
 – Accumulation in soil remains high

➤ Measures to reduce livestock density in lake catchment areas
➤ High P supply to soils continues in part;
➤ potential loss of P
➤ Farms have (still) carried out little structural adjustment
Decrease in algal-available P

Klima unabhängige Modellrechnung für die Einträge von algenwirksamem Phosphor in den Sempachersee aus dem gesamten Seeziegungsgebiet 1986 bis 2006
Median der Jahresabflüsse = Standardabflussjahr = 1990

- bodenbürstiger Phosphor
- Ziel P-Eintrag weniger als 4.7 t/Jahr
- Linear (bodenbürstiger Phosphor)
Lessons learned Nottwil

Soil related P input and water flow
Achievement of objectives - water protection

+ Concentrations of P_{total} reach historic lows
+ Objective reached surprisingly quickly
 – Natural spawning of whitefish is not yet possible

- What are the reasons?
- What would happen if no measures were taken within the lakes? (aeration, induced circulation)
- Correlation between P content and amount of inflow
- What is the effect of sediment input on the P balance-sheet?
- Other aspects
Uncertain interpretation

- Basic principles of the project: pessimistic assessment
- Particulate P is increasing
- Dissolved P is decreasing
- Total P in lakewater is falling

- How great is the error in the calculation of loading?
- Is more P being stored in the sediments? Why?
- Does assisted circulation play a part (e.g. more P in the outflow, improvement of the balance-sheet)?
- Increased inflow quantity correlated with particulate P?
Conclusions

- The lakes are becoming increasingly healthy
- The canton and farmers are making a big contribution
- Rehabilitation programmes are showing effects
- Awareness of farmers is increasing
- Big “investments” are necessary
- Necessity of political conviction at all levels
- Unanswered questions: task for research
- In future, structural measures are necessary
Thank you for your attention

With a joint effort by those involved in agriculture, water protection, spatial planning and politics, the objective will be achieved!