Introduction

- The use of soil nutrient testing is a tried and tested approach to guide growers on their application rates for key crop fertiliser inputs.
 - In the UK, the two main extraction methods used for estimating soil available P are Olsen which is used predominantly in England and Wales (Defra, 2010), and Modified Morgan extraction typically used north of the border in Scotland (Sinclair et al., 2010).
 - In recent years, the proliferation of commercial analytical laboratories may have led more farmers and agronomists to send soil samples to different laboratories to those traditionally used. There is a risk that the chosen method is less appropriate for the soils being tested and could lead to reduced confidence in P recommendations made.
 - Attempts to make broad comparisons between the two extraction methods described and the P index / crop P availability likely from the soil tested do exist (see Table 1).

Comparison of Olsen vs Modified Morgan

- The SRUC commercial laboratory had 234 soil samples that had been analysed using both the Olsen and the Modified Morgan methods from 1996 onwards.
- The data in Figure 1 shows how the P concentrations of the soil samples compare between the two methods as well as the P index systems used for each method for 221 samples (13 extreme outliers were removed).
 - There is a better agreement between index classes at lower P concentrations

Conclusions

- The results highlight the potential to either significantly over OR under fertilise crops with P
 - The method used and the physical and chemical properties of the soil are likely to play a large part in determining the extent to which this occurs
- As most P fertiliser recommendation systems are based predominantly on soil P analysis, it is important that the most appropriate soil extraction and analytical method is used to provide the best estimate of P requirement
 - Failure to do so increases the risk of inefficient P fertiliser practices which can manifest itself in two broad outcomes
 - Environmental issues (e.g. nutrient loss to the environment)
 - Additional cost to the farmer (due to excessive P purchases, or yield loss due to P deficiency)

References

- The SRUC commercial laboratory had 234 soil samples that had been analysed using both the Olsen and the Modified Morgan methods from 1996 onwards.
- The data in Figure 1 shows how the P concentrations of the soil samples compare between the two methods as well as the P index systems used for each method for 221 samples (13 extreme outliers were removed).
 - There is a better agreement between index classes at lower P concentrations
- The range and frequency at which individual soil samples matched their soil P status for Modified Morgan extractable P categories with respect to their corresponding Olsen extractable P index are shown in Figure 2.
 - There is clearly a wide discrepancy between the two soil P extraction procedures discussed and their subsequent analysis
 - The scale and direction of difference was not consistent
 - At L and M- on the Modified Morgan P index categories, there were a very large number of samples in index 2, 3 and 4 using Olsen as a comparison
 - At higher Modified Morgan P index categories, there were still a large proportion of samples in index 1, 2 or 3 using Olsen as a comparison

Acknowledgements

SRUC receives funding from Scottish Government RERAD
Further information on this work is available from:
Robin Walker, SRUC, Craibstone Estate, Aberdeen AB21 9YA, UK
Tel: + 44 (0)1224 711209 Email: robin.walker@sruc.ac.uk