Achieving Environmental and Agronomic Soil P Targets under a Zero P Application Regime

Doody D.G1*, Watson J. C.1, Cade-Menun B. J2, and Liu C. W.3

1Agri-Food and Biosciences Institute, Belfast, Northern Ireland

2Agriculture and Agri-Food Canada, Swift Current, Canada

3Stanford Magnetic Resonance Laboratory, Stanford, USA

Introduction

Despite the implementation of EU regulations controlling the use of fertilisers in agriculture, high soil phosphorus (P) concentrations remain a significant threat to water quality in many areas of Northern Ireland (NI) (Figure 1). This project investigated the sustainability of zero P fertiliser application on soil P fractions, herbage P content and the risk of P loss to water.

Methods

Between 2000 and 2005 0, 10, 20, 40, 80 kg inorganic P ha-1 yr-1 was applied to five grazed grassland plots (FAO Soil Classification: Dystric Stagnosol), building the Olsen soil P status at 0-7.5 cm in the soil profile up to 19, 24, 28, 38 and 67 mg P L-1, respectively. From 2005 to 2010, the plots received zero P applications, except for dung deposited by grazing animals. Changes in Olsen P were and herbage P content were monitored regularly during this period. Selected soil samples from 2000, 2005 and 2010 were also analysed for Total P (TP), Oxalate P (from which the degree of P saturation (DPS) was calculated) and Water Extractable P (WEP). (NMR and P fractionation data not presented)

Results

Figure 1: Distribution of areas of high soil P across NI. (Agronomic optimum for grasslands = Index 2).

Figure 2: Decline in Olsen P over 5 yrs of zero P applications. Based on rate of decline over 5 yrs the decrease from index 4 to mid index 2 = 13 yrs.

Figure 3: Relationship between rate of decline in Olsen P (based on weekly soil sampling) and initial P concentration in 2005.

Figure 4: Changes in TP on selected plots. Between 2005 & 2010 there was no significant decrease in total soil P on any of the plots.

Figure 5: Percentage contribution of inorganic P to TP on selected plots. Significant decrease (p<0.01) in all four plots between 2005 and 2010.

Figure 6: Changes in WEP on selected plots. Significant decrease observed between 2005 & 2010 in the 20, 40, 80 kg P/ha plot (p<0.05).

Figure 7: Changes in the degree of P saturation (DPS) on selected plots. Significant decrease (p<0.05) in DPS on the 40 & 80 kg P/ha plots between 2005 and 2010.

Conclusions

• Zero P application for 5 yrs to high P soils reduces the risk posed to water as indicated by environmental soil P tests.

• However, restricting P applications may have implications for the sustainability of intensive dairy farming in NI (Figure 8).

• Mitigating the risks to water quality from high P soils pose a significant challenge for dairy farming in Northern Ireland.